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Bootstrap Resampling

R. Helmers

1. INTRODUCTION

B. Efron, who invented the bootstrap in 1979, recently wrote: ‘Computer-
intensive methods like the bootstrap greatly extend the range ot classical
methods, and this is the way I believe that they will most dramatically af-
fect 21st century statistics’. The bootstrap is a computer-intensive method
for estimating the variability of statistical quantities and for setting con-
fidence regions. The name ‘bootstrap’ reters to the analogy with pulling
oneself up by one’s own bootstraps. Efron’s bootstrap is to resample the
data. Given observations X, ..., X,, artificial bootstrap samples are drawn

with replacement from Xi,...,X,, putting equal probability mass -}; at
each X;. For example, with sample size n = 5 and distinct observations

X1,Xo, X35, X4, X5 one might obtain X3, X3, X, X5, X4 as bootstrap sam-
ple. In fact there are 126 distinct bootstrap samples in this case.

Bootstrap resampling often gives much better estimates than traditional
statistics usually provide us with. The bootstrap can also be an eftective
tool in many problems of statistical inference, which otherwise would have
been too complicated to handle; e.g., the construction of a confidence band
in nonparametric regression, testing for the number of modes of a density,
or the calibration of confidence bounds. The problem of constructing a
confidence band for an unknown ‘regression mean’ arises, e.g., if one tries
to ascertain a trend in annual series of observed (air) temperatures, possibly
due to the influence of ‘global warming’ on such data.
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In this paper I will survey recent research at CWT in the general area
of bootstrap resampling methods. At the same time research in this area.
which takes place at Leiden University, will also be briefly reviewed. Re-
sampling 1s one of the four selected areas of research in the focus area
‘Computationally Intensive Methods in Stochastics’ (1993-1998) of NWO.
1T'his topic was also the central theme of a two-month research workshop
presented (in the summer of 1995) at the Institute of Technology, Bandung,
as part ot a cooperation project ‘Applied Mathematics and Computational
Methods’ (1995-1999) between The Netherlands and Indonesia, in which
CWI is one of the Dutch cooperating Institutes.

2. EFRON’S NONPARAMETRIC BOOTSTRAP

To begin with I describe Efron’s nonparametric bootstrap in a simple setting
and address briefly the important question: when does Efron’s bootstrap
work and when does it fail?

2.1. Description of the bootstrap
Suppose Xp,..., X, is a random sample of size n from a population with
unknown distribution function F on the real line. Let, in addition,

0 = O(F) (2.1)

denote a real-valued parameter which we want to estimate.
Let 17, = 7, (X1,...,X,) denote an estimator of #, based on the data

X1,.-.,Xpn. Our object of interest is the distribution of n2 (T}, — 0), i.e., we
define

G, (x) = P(?'L%(T,,, ~0) < 1), —x <2< o0, (2.2)

where P denotes ‘probability’ corresponding to F. Clearly G,,, the exact
distribution of nz (7, — @), is unknown, because F' is not known to us, but
we can try to estimate 1t. The Efron’s nonparametric bootstrap estimator
(approximation) of &,, is given by

Gy (x) = Py(n¥ (T} = 0,) < x), =00 < x < o0, (2:3)

Lo

Here 7)) = T, (X7{,...,X}), where X{,..., X* denotes an artifical random

o~

~

sample—the bootstrap sample—from F,, the empirical distribution func-
tion of the original observations X,,...,X,,, and 8,, = 6(F,,). Note that F,,
1s the random distribution-—a step function--which puts probability mass

;.];.. at each of the X;’s (1 <¢ < n), sometimes referred to as the resampling

distribution. The empirical distribution function F}, is illustrated in figure
1. Finally, P} denotes ‘probability’ corresponding to Fj,, conditionally given
F,, 1.e., given the observations Xy,..., X,,. To emphasize the fact that G*

15 a conditional distribution, one may as well write



BOCOTSTRAP RESARPLING

}’n(\) N

. al

r HIE L bl M e Frrrr—— L S SR E L Ao rees T e b 00 it U iR AT ST T T e miem AR AR T e Y

476 —

2/6  —

§ J

Figure 1. Empirical distribution function based on observations ', ..., I,

Gr(x) = Pr(n*(T; —0,) <«

Xi,...,X,), —¢ << oo, (2.4)

instead of (2.3). Obviously, given the observed values Xy,..., X, in our
sample, F, is completely known, and--—at least in principle--G is also
completely known. We may view (7 as the empirical counterpart in the
‘bootstrap world’ to ¢,, in the ‘real world’. In practice, exact computation of
G by complete enumeration is usually impossible (even in our sophisticated
computer age): for a sample X,,...,X,, of n distinct numbers there are
(2"’,.’,:‘1) distinct bootstrap samples. For n = 10 already near to 100,000
bootstrap samples have to be enumerated, so very soon this method becomes
unfeasible and we have to turn to another solution: Monte-Carlo simulation.

In a sense, this boils down to repeatedly drawing a random bootstrap
sample from all possible bootstrap samples. We fix a large number B.
With the use of the computer, we generate a bootstrap sample and cal-
culate the resulting value of n% (T* — 6,,). By repeating this procedure B

. . 1 1 /- N .
times, we obtain B values, say n2 (1), —6,,),...,n% (1, 5 —0,), which give

an accurate Monte-Carlo estimate to the theoretical bootstrap distribution
G7, of ns (T —6,,). Monte-Carlo simulation was of course already well es-
tablished before the invention of the bootstrap, but it finds a very natural
place here. Generating a bootstrap sample amounts to randomly drawing
a sample of size n with replacement from Xq,...,X,,. The Monte-Carlo
procedure introduces a second source of randomness. However, by choosing

247



248

K. HEIMERS

B suitable large we can control the Monte-Carlo error and make sure that
it 1s negligible in comparison with the bootstrap approximation error.

2.2. Operation of the bootstrap
When does Efron’s bootstrap work? The consistency of the bootstrap ap-
proximation G, viewed as an estimate of (¢,,, l.e.. we require

sup |G, (x) = GF ()] — 0, as n — oo (2.5)

A

to hold, with P-probability one (i.e., for almost all sequences X, Xo,.. ), Or
a slightly weaker version of it, namely that (2.5) holds only in P-probability,
rather than P-almost surely, is generally viewed as an absolute prerequisite
for Efron’s bootstrap to work in the problem at hand. Of course, the as-
sertion (2.5) is only a first order asymptotic result, and the error commit-
ted, when the bootstrap is applied in finite samples— say, with sample size
n = 20 -—may still be quite large.

In the important special case that (F') = = [ xdF(x), the population
mean, and 7, = X,, = n~! Z:’._-:-.l X;, the sample mean, a by now classical
result asserts that (2.5) holds true, i.e., Efron’s bootstrap works, provided
the variance o of the underlying distribution F is finite. If o2 is infinite the
situation becomes more complex: it has been proved that Efron’s bootstrap
still works, provided F' is in the domain of attraction of the normal law:
otherwise Efron’s bootstrap fails.

Bootstrap resampling can also be used to estimate functionals of G,,, e.g.,
1its variance, rather then G, itself. W.R. van Zwet (1994) has recently stud-
led the performance of Efron’s bootstrap estimate of variance for arbitrary
symmetric statistics 1, = T, (X,..., X, ) with finite second moment us-
ing the Hoeflding decomposition. He showed that Efron’s bootstrap will
typically work, provided > ', E(T,|X;), the linear term in the Hoeffding
decomposition of 7,,, is the dominant one and the higher order terms in
the Hoefiding decomposition tend to zero rather fast. The requirement con-
cerning the linear term is also shown to be a necessary condition for the
consistency of Efron’s bootstrap; otherwise (2.5) generally fails to hold. A
specific case for which Efron’s bootstrap works—namely Serfling’s class of
generalized L-statistics—is investigated by R. Helmers, P. Janssen, and R.
Serfling (1990).

H. Putter and Van Zwet (1993) (c.f. also chapter 2 of the Ph.D. thesis
of Putter (1994)) emphasized the importance of a proper choice of the re-
sampling distribution (not necessarily the empirical distribution F),. as in
Efron’s nonparametric bootstrap). Let 7,(F') denote the distribution of a
statistical quantity R,, = R, (X,,..., X,; F'). If F}, denotes the resampling
distribution, F, = M..,,__(Xl’ ..., X, ) being an estimate of F', then the boot-
strap estimate of 7, (F') becomes T ( Fﬁ’.,.b). Note that F, may be very different

from the empirical distribution Fj,, e.g., one may consider F,, = F 5 » when
Tl
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1t 18 a priori known that F' belongs to a parametric model {Fy,0 € O},
the finite-dimensional parameter 6 is estimated by t‘),, — (;,,(’,..‘X’L, X, ),
a consistent estimator of § (parametric bootstrap). Putter and Van Zwet
(1993) have recently proved a general result concerning the consistency of
bootstrap estimates, with general resampling distribution F,,.

3. ACCURACY OF BOOTSTRAP ESTIMATES

3.1. Smooth cases

In the previous section we have seen that Efron’s bootstrap is consistent for
() — T2 . .
the case of the sample mean X,, = n=' > X;, provided the underlying

distribution F of the observations has a finite second moment. With

Gn(il') — P(n%-’"(X” — }l) i L) (31)
and
¥ (2) = P*(n? (X! - X,) <) (3.2)

we have, with P-probability 1,

sup |G, (x) — G (x)] — 0, as n — oc (3.3)
J
whenever 0 < [ r*dF(x) < oo. However, the question remains: how well
does Efron’s bootstrap estimate (G approximates (,,7 The answer is that
typically the rate of convergence in (3.3) is of the classical order n~3. The
famous Berry-Esseen theorem asserts that the accuracy of the normal ap-
proximation is of the same order n~ 32, provided [ |z|°dF(x) < oo. How-
ever, we can easily improve the accuracy ot our bootstrap estimate, by
first employing ‘Studentization’. That is, instead of the statistical quantity
7‘2;‘-1'?(/?”[ — ,u,) and 1ts bootstrap version *r'z%()?,’*; — X’r,.,,), we consider the old
and famous Student ¢ statistic n3 (X, —u)/S,, and its bootstrap counterpart

1,5 . . . L . .
n2 (X} — X,)/S", with respective distribution functions

Lo

Iy
Ghs(x) = P(n%()?,,, —u)/S, <x), —oo << oo, (3.4)
and
G (x)= P (n%(fz - X,)/Sk < x), —oco < < o0. (3.5)

where S2 = (n — 1)1 > (X — X,,)? denotes the sample variance. Note
that S** is nothing but S2, with the X;’s replaced by the X*’s. We note
1n passing that, if £ 1s normal, (s of course reduces to the well-known
Student ¢ distribution with n — 1 degrees of freedom. In general, however,
the exact distribution G,,; of Student’s ¢ is unknown, but we can try to

estimate it, e.g., by using the bootstrap. Similarly, as in (3.3) we have that
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 bootstrap - true

......... emp Edg -~ true

normal - true

| Figure 2. Three approximations; n = 20; F' exponential.
sup |Gps(x) — G ()] — 0, as n — oc, (3.6)
£

but now the rate of convergence is faster: in fact, one can show that in
P-probability

1 ‘
Y . v ¥ K e I . é
n2 sup |G, () — G (r)] — 0, as n — o0 (3.7)
A
under rather weak conditions. Under somewhat more stringent assump-
tions, one can prove that sup, |G, (x) — G . (x)|, the accuracy of the boot-
strap approximation, is of the exact order n~! in P-probability. In contrast.

the normal approximation for Student’s ¢ possesses the classical Berry-
1

Esseen type error of order n=2.

In other words: the bootstrap estimate G7 . is asymptotically closer to
G,s than the standard normal distribution. This ‘bootstrap is better than
normal’ property of Efron’s bootstrap for the Student ¢ statistic clearly sug-
gests the benificial effect of “Studentization’ before bootstrapping for this
important special case. A Monte-Carlo result, which supports this claim, is
presented in figure 2 (borrowed from Putter’s thesis (1994)). We consider
the special case that F' is exponential. First of all, the distribution G,,, was
approximated by Monte-Carlo using 107 samples. Next a sample of size
n = 20 was drawn from a standard exponential distribution and—based on
this sample—the distribution G,,, was estimated in three ways, first using
the classical normal approximation, secondly using the bootstrap G, ( as

_* ns
in (3.5), using Monte-Carlo simulation with B = 10° ). With this choice
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of B, we are pretty certain that the Monte-Carlo error is negligible. Note
that we should take care that too low a choice for I3 doesn’t ruin the second

order accuracy of the bootstrap estimate 7 .. In fact. it is easily checked
that this means that the Monte-Carlo error —-which is of order —= — should

Vv B

be of a smaller order than -};— the accuracy ot the bootstrap approximation,
i.e., B should be of a larger order than n=. The third way uses empiri-
cal Edgeworth expansion ( EEE ). To make the differences between these
three methods discernible we have plotted for each of the three methods the
resulting estimate minus the target distribution &,,,. The graph that lies
closest to zero corresponds therefore to the best approximation. It is clearly
seen that both bootstrap and Edgeworth expansion outperform the normal
approximation. The bootstrap performs slightly better than EEE, due to
the fact that the bootstrap also implicitly estimates higher order terms in
the Edgeworth expansion consistently.

3.2. Non-smooth cases

The above result for Student’s ¢ is in fact already known for about 10 years
(cf., e.g., the references in [2]) and it is generally viewed as an important
argument 1n favour of Efron’s bootstrap. Helmers proved (1991) that the
‘bootstrap is better than normal’ property also holds true for more compli-
cated nonlinear statistics like Hoeftding’s famous class of U-statistics. The
extension of the ‘bootstrap is better than normal’ property to arbitrary Stu-
dentized symmetric statistics is still an interesting open problem at present.
In any case, however, the quadratic and higher order terms in the Hoefiding
decomposition for a symmetric statistic 7,, = T,,(X1, ..., X,,) should be of a
required order of magnitude, otherwise the speed of bootstrap convergence
asserted in (3.7) fails to hold. An important specific example of the latter is
the case of the median, and more generally, quantiles. In such ‘non-smooth’

cases (the parameter of interest, e.g., § = 6(F) = F~!(3) is a much less
smooth functional of F', then the parameter § = 6(F) = [ xdF(x)) we have

' 1 . _
a much slower rate (roughly of order n™ %) of convergence of Efron’s boot-

strap approximation. In fact, although Efron’s bootstrap for the median is
consistent, it is worthless in practice, even for a sample size n as large as
100. In the computer calculations that led to figure 3 we have generated
a sample of size n = 100 from a standard normal distribution. As a result
we find that the difference with the true distribution function is maximized
at * = 0.39; at this point the true distribution equals 0.657 while the
bootstrap approximation yields 0.935, which means a relative error of more
than 40%. It is well known that the smoothed bootstrap, where resampling
1s done from a smoothed version of the empirical distribution, results in a
better approximation. For the smoothed bootstrap we used a normal kernel
and a bandwidth A = 0.1, and indeed the smoothed bootstrap seems to per-
form much better. A more sophisticated choice of kernel and bandwidth will
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Figure 3. Two approximations for the median; n = 100: F' normal.

presumably lead to a further reduction of the error of the smooth bootstrap
approximation.

Related work for the more general case of U-quantiles can be found in a
contribution of Helmers, Janssen and N. Veraverbeke to [4] (¢f. Helmers,
M. Huskova (1994) for an extension to multivariate U-quantiles). Specific
examples of interest of U-quantiles are the well-known Hodges-Lehmann es-
timator of location, which is given by the median of all pairwise averages,
and an estimator of spread proposed by Bickel and Lehmann. Young, p. 392
In a prominent recent review paper |5, feels that ‘this sort of work is impor-
tant’, because ‘the contexts to which the results apply are highly relevant to
precisely the sort of circumstances—when there is limited knowledge about
the underlying distribution-—for which bootstrap was designed’.

4. APPLICATIONS

To conclude I briefly discuss two selected topics of current interest in boot-
strap theory and its applications: resampling methods for finite populations,
and spatial bootstrapping.

Resampling methods for finite populations is an important topic of cur-
rent interest. Helmers and M.H. Wegkamp considered (1995) the situation
where the finite population is viewed as a realization of a certain superpop-
ulation model (heteroscedastic linear regression, without intercept). This
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Figure 4. Observed oilspot.

enables us to incorporate auxiliary information (past experience) in the
statistical analysis. The authors first came across this problem in a 1994
statistical consultation project at CWI with The Netherlands postal ser-
vices PT'T Post. In this setup a new resampling scheme called ‘two-stage
wild bootstrapping’ is proposed and studied. The basic probabilistic tool we
employ in our mathematical analysis is the celebrated Erdos-Rényi central
limit theorem for samples without replacement from a finite population.
Bootstrapping with spatial data i1s very clearly an important area for fu-
ture work in the research group ‘Image analysis and spatial stochastics’ of
CWI. We briefly describe here a practical application in which spatial boot-
strapping 1s used. In a project commissioned by the North Sea Directorate,
Ministry of Public Works the problem is to estimate the intensity of oil-
pollution in the North Sea. The available real data sets (‘marked planar
oint patterns’) consist of the locations and sizes (marks) of the oilspots
observed (cf. figure 4) by a surveillance aircraft. A planar inhomogeneous
Poisson point process with intensity function A(-, 8)-—parameterized by :
finite-dimensional parameter —was used as a spatial (parametric) model
for the locations of (the centres of) oilspots. The parameterization enables
one to incorporate the available a priori knowledge about o1l pollution, such
as the location of sources of oilpollution (i.e. shipping areas or off-shore lo-
cations) and the intensity of shipping in various regions. However, nothing

i
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seems to be known about the distribution of the volumes (marks) of oilspots.
but we can of course use the sizes of the observed oilspots to estimate it
(nonparametric approach). In this setup a simple semiparametric form of
spatial bootstrapping was developed in order to estimate the accuracy of
the estimated total amount of oilpollution in the North Sea.
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The interested reader is referred to [1] for an excellent introduction to
the bootstrap. Uses of Edgeworth expansions in the mathematical analysis
of Efron’s bootstrap is the topic of the research monograph [2]. Additional
information on the bootstrap may also be found in the proceedings volume
4] and discussion paper [5]. The present article is basically a shortened non-
technical revision of [3]. The latter reference also contains a more complete
list of references.
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